The following iterative sequence is defined for the set of positive integers:
n \to n/2 (n is even)
n \to 3n+1 (n is odd)Using the rule above and starting with 13, we generate the following sequence:
13 \to 40 \to 20 \to 10 \to 5 \to 16 \to 8 \to 4 \to 2 \to 1It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1.
Which starting number, under one million, produces the longest chain?
NOTE: Once the chain starts the terms are allowed to go above one million.
https://projecteuler.net/problem=14
The Collatz Problem is one of my favorite mysteries of mathematics. Two simple rules seem to connect all natural numbers back to good ol’ 1. This conjecture is most likely true, but it is intriguing that it has not been proven yet. One thing is for sure – the tools developed to prove it will be groundbreaking. Look at the tools developed to prove Fermat’s Last Theorem!
I wrote a post about drawing the network formed by connecting numbers in Collatz sequences. I found an onion. Regardless of the onion’s significance, the code developed in that post will be reused and refined here. A directed tree of all Collatz sequences up to one million is generated with the help of networkx
, an excellent package for Python. networkx
is great for any tasks involving graphs and networks.
The Collatz tree of all starting numbers up to n is generated with the following code:
import networkx as nx def apply_collatz(n): """Returns n's next number in its Collatz sequence""" if n % 2 == 0: return n // 2 else: return 3*n + 1 def generate_collatz_tree(n): """Returns the Collatz tree of all starting numbers up to n as a directed Networkx graph""" tree = nx.DiGraph() for i in range(1, n + 1): if i in tree: continue hailstone = i while hailstone != 1: next_hailstone = apply_collatz(hailstone) tree.add_edge(hailstone, next_hailstone) hailstone = next_hailstone return tree
Now that the Collatz tree of one million has been generated, the solution to the problem is just three lines away.1Plus thousands of lines in networkx’s source code It makes use of networkx
‘s dag_longest_path
function, which returns the longest path in the graph.
>>> collatz_tree = generate_collatz_tree(1000000) >>> longest_path = nx.dag_longest_path(collatz_tree) >>> print(longest_path[0]) 837799
Just for curiosity’s sake, the longest path is 525 numbers long! Here it is, in its full glory!
[837799, 2513398, 1256699, 3770098, 1885049, 5655148, 2827574, 1413787, 4241362, 2120681, 6362044, 3181022, 1590511, 4771534, 2385767, 7157302, 3578651, 10735954, 5367977, 16103932, 8051966, 4025983, 12077950, 6038975, 18116926, 9058463, 27175390, 13587695, 40763086, 20381543, 61144630, 30572315, 91716946, 45858473, 137575420, 68787710, 34393855, 103181566, 51590783, 154772350, 77386175, 232158526, 116079263, 348237790, 174118895, 522356686, 261178343, 783535030, 391767515, 1175302546, 587651273, 1762953820, 881476910, 440738455, 1322215366, 661107683, 1983323050, 991661525, 2974984576, 1487492288, 743746144, 371873072, 185936536, 92968268, 46484134, 23242067, 69726202, 34863101, 104589304, 52294652, 26147326, 13073663, 39220990, 19610495, 58831486, 29415743, 88247230, 44123615, 132370846, 66185423, 198556270, 99278135, 297834406, 148917203, 446751610, 223375805, 670127416, 335063708, 167531854, 83765927, 251297782, 125648891, 376946674, 188473337, 565420012, 282710006, 141355003, 424065010, 212032505, 636097516, 318048758, 159024379, 477073138, 238536569, 715609708, 357804854, 178902427, 536707282, 268353641, 805060924, 402530462, 201265231, 603795694, 301897847, 905693542, 452846771, 1358540314, 679270157, 2037810472, 1018905236, 509452618, 254726309, 764178928, 382089464, 191044732, 95522366, 47761183, 143283550, 71641775, 214925326, 107462663, 322387990, 161193995, 483581986, 241790993, 725372980, 362686490, 181343245, 544029736, 272014868, 136007434, 68003717, 204011152, 102005576, 51002788, 25501394, 12750697, 38252092, 19126046, 9563023, 28689070, 14344535, 43033606, 21516803, 64550410, 32275205, 96825616, 48412808, 24206404, 12103202, 6051601, 18154804, 9077402, 4538701, 13616104, 6808052, 3404026, 1702013, 5106040, 2553020, 1276510, 638255, 1914766, 957383, 2872150, 1436075, 4308226, 2154113, 6462340, 3231170, 1615585, 4846756, 2423378, 1211689, 3635068, 1817534, 908767, 2726302, 1363151, 4089454, 2044727, 6134182, 3067091, 9201274, 4600637, 13801912, 6900956, 3450478, 1725239, 5175718, 2587859, 7763578, 3881789, 11645368, 5822684, 2911342, 1455671, 4367014, 2183507, 6550522, 3275261, 9825784, 4912892, 2456446, 1228223, 3684670, 1842335, 5527006, 2763503, 8290510, 4145255, 12435766, 6217883, 18653650, 9326825, 27980476, 13990238, 6995119, 20985358, 10492679, 31478038, 15739019, 47217058, 23608529, 70825588, 35412794, 17706397, 53119192, 26559596, 13279798, 6639899, 19919698, 9959849, 29879548, 14939774, 7469887, 22409662, 11204831, 33614494, 16807247, 50421742, 25210871, 75632614, 37816307, 113448922, 56724461, 170173384, 85086692, 42543346, 21271673, 63815020, 31907510, 15953755, 47861266, 23930633, 71791900, 35895950, 17947975, 53843926, 26921963, 80765890, 40382945, 121148836, 60574418, 30287209, 90861628, 45430814, 22715407, 68146222, 34073111, 102219334, 51109667, 153329002, 76664501, 229993504, 114996752, 57498376, 28749188, 14374594, 7187297, 21561892, 10780946, 5390473, 16171420, 8085710, 4042855, 12128566, 6064283, 18192850, 9096425, 27289276, 13644638, 6822319, 20466958, 10233479, 30700438, 15350219, 46050658, 23025329, 69075988, 34537994, 17268997, 51806992, 25903496, 12951748, 6475874, 3237937, 9713812, 4856906, 2428453, 7285360, 3642680, 1821340, 910670, 455335, 1366006, 683003, 2049010, 1024505, 3073516, 1536758, 768379, 2305138, 1152569, 3457708, 1728854, 864427, 2593282, 1296641, 3889924, 1944962, 972481, 2917444, 1458722, 729361, 2188084, 1094042, 547021, 1641064, 820532, 410266, 205133, 615400, 307700, 153850, 76925, 230776, 115388, 57694, 28847, 86542, 43271, 129814, 64907, 194722, 97361, 292084, 146042, 73021, 219064, 109532, 54766, 27383, 82150, 41075, 123226, 61613, 184840, 92420, 46210, 23105, 69316, 34658, 17329, 51988, 25994, 12997, 38992, 19496, 9748, 4874, 2437, 7312, 3656, 1828, 914, 457, 1372, 686, 343, 1030, 515, 1546, 773, 2320, 1160, 580, 290, 145, 436, 218, 109, 328, 164, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1]